Barycentric Bash

James Rickards
jamesarickards@hotmail.com

1 Introduction

In the world of bashing geometry problems, coordinate bash, complex number bash, and trig bash are probably the most common tools. However there is another tool which can prove to be useful for certain problems, namely the barycentric bash. The basis of these notes and the formula sheet came from the two articles by Evan Chen and Max Schindler, namely "Barycentric Coordinates in Olympiad Geometry" and "Barycentric Coordinates for the Impatient".

2 Formulas

For the main set of formulas and results, see Appendix B of Barycentric Coordinates in Olympiad Geometry. I add a few useful results here.

Theorem 1. Let P be on segment $X Y$ such that $X P / X Y=\lambda$. Then $P=(1-\lambda) X+\lambda Y$.
The proof of the above theorem is immediate, but it is useful to note as it is easy to accidentally swap X, Y in the formula for P.

Theorem 2. The lines $\ell_{i}: u_{i} x+v_{i} y+w_{i} z=0(i=1,2)$ intersect at the vector product of $\left(u_{1}, v_{1}, w_{1}\right)$ and (u_{2}, v_{2}, w_{2}), i.e.

$$
\left|\begin{array}{ccc}
i & j & k \\
u_{1} & v_{1} & w_{1} \\
u_{2} & v_{2} & w_{2}
\end{array}\right|=\left(v_{1} w_{2}-w_{1} v_{2}: w_{1} u_{2}-u_{1} w_{2}: u_{1} v_{2}-v_{1} u_{2}\right) .
$$

This formula can be useful to remember in more complicated problems.
Theorem 3. The lines $\ell_{i}: u_{i} x+v_{i} y+w_{i} z=0$ for $i=1,2$ are parallel if and only if

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
u_{1} & v_{1} & w_{1} \\
u_{2} & v_{2} & w_{2}
\end{array}\right|=u_{1} v_{2}-v_{1} u_{2}+v_{1} w_{2}-w_{1} v_{2}+w_{1} u_{2}-u_{1} w_{2}=0
$$

The proof of this theorem is two lines are parallel iff they don't intersect, i.e. iff the point of intersection we calculate is not actually a point, and this is iff the coordinates sum to 0 .

3 Tips

- Think before you leap: just because the problem statement uses the variables A, B, C doesn't mean you should take that triangle to be the reference point of your bash. An alternative choice may greatly simplify the calculations (for example, if the problem includes exactly one circumcircle, you may want to take the triangle corresponding to this circumcircle to be the reference).
- Double check every equation you write as you go along. When bashing out the problem there is a lot of algebra, and it is quite easy to make errors; an error made at the start of a problem can carry on through the whole thing, rendering the final result incorrect. In such cases, assigning part marks is very difficult, and you probably won't get many. Checking equations as you go will take longer, but the potential time save against errors makes it very worthwhile. Pointers on double checking:
- Is the point/line/circle equation supposed to by symmetric with respect to B, C (etc.)? If so, then your equation should reflect this
- If you are intersecting two lines (or circles), think about plugging in the result back into the equations to verify your work
- If there is an expression that shows up a lot, consider replacing it by a variable in some calculations. Sometimes an equation will factor, and this may make it easier to notice the factorization.
- Given any (x, y, z) with $x+y+z \neq 0$, there exists a unique rescaling of (x, y, z) so that it has sum one. In particular, we can work with coordinates being triples (x, y, z) with $x+y+z \neq 0$, with the understanding that it corresponds to the point where we normalize the coordinates. This is helpful when considering homogeneous equations: for example the line and circle equations. However, when working with things like distances, the normalized versions are necessary.
- If you use barycentric coordinates, you don't have to do the entire problem with them, and you should avoid blindly applying them. For example, consider the following problem: let $A B C$ be a triangle with a right angle at C. Find the barycentric coordinates for D, the foot of the perpendicular form C to $A B$. You could find D by calculating the equation of the line $C D$ and intersecting with $A B$, or you can use similar triangles to get $A D=b^{2} / c$ and $D B=a^{2} / c$, whence $D=\left(a^{2}: b^{2}: 0\right)$ (not normalized). Both approaches work, but the second one is quicker and easier.

4 Example

Example 1 (USAMO 2008 P2). Let $A B C$ be an acute, scalene triangle, and let M, N, and P be the midpoints of $B C, C A$, and $A B$, respectively. Let the perpendicular bisectors of $A B$ and $A C$ intersect ray $A M$ in points D and E respectively, and let lines $B D$ and $C E$ intersect in point F, inside of triangle $A B C$. Prove that points A, N, F, and P all lie on one circle.

Solution. This problem is just begging for a barycentric solution. We have three midpoints, perpendicular bisectors of the sides, and intersecting lines. The only circle comes at the end, where
we will just have to check that the coordinates of F satisfy the equation of the circle for $A N P$.
Initialize $A=(1,0,0), B=(0,1,0), C=(0,0,1)$, and $|A B|=c,|B C|=a,|C A|=b$. We have $M=(0: 1: 1), N=(1: 0: 1), P=(1: 1: 0)$. Line $A M$ thus has equation $y-z=0$. The perpendicular bisector of $A C$ has equation $b^{2}(x-z)+y\left(a^{2}-c^{2}\right)=0$, so intersecting this with line $A M$ gives us $E=\left(1: \frac{b^{2}}{b^{2}+c^{2}-a^{2}}: \frac{b^{2}}{b^{2}+c^{2}-a^{2}}\right)$. By symmetry, we get $D=\left(1: \frac{c^{2}}{b^{2}+c^{2}-a^{2}}: \frac{c^{2}}{b^{2}+c^{2}-a^{2}}\right)$. It follows that the line $B D$ has equation $\frac{c^{2}}{b^{2}+c^{2}-a^{2}} x-z=0$, and line $C E$ is $\frac{b^{2}}{b^{2}+c^{2}-a^{2}} x-y=0$. The intersection of these lines is $F=\left(1: \frac{b^{2}}{b^{2}+c^{2}-a^{2}}: \frac{c^{2}}{b^{2}+c^{2}-a^{2}}\right)$.

We have now calculated F, so let's calculate the equation of the circle $A P N$. The general form is $-a^{2} y z-b^{2} z x-c^{2} x y+(u x+v y+w z)(x+y+z)=0$, and plugging in point A gives us $u=0$. Plugging in point N gives $w=b^{2} / 2$, and point P gives $v=c^{2} / 2$. Therefore the equation is

$$
-a^{2} y z-b^{2} z x-c^{2} x y+\left(\frac{c^{2}}{2} y+\frac{b^{2}}{2} z\right)(x+y+z)=0
$$

to solve the problem it suffices to show that the point F satisfies this equation. This is equivalent to

$$
\begin{aligned}
0= & -\frac{a^{2} b^{2} c^{2}}{\left(b^{2}+c^{2}-a^{2}\right)^{2}}-\frac{b^{2} c^{2}}{b^{2}+c^{2}-a^{2}}-\frac{b^{2} c^{2}}{b^{2}+c^{2}-a^{2}} \\
& +\left(\frac{b^{2} c^{2}}{2\left(b^{2}+c^{2}-a^{2}\right)}+\frac{b^{2} c^{2}}{2\left(b^{2}+c^{2}-a^{2}\right)}\right)\left(1+\frac{b^{2}+c^{2}}{b^{2}+c^{2}-a^{2}}\right) \\
= & -\frac{a^{2} b^{2} c^{2}}{\left(b^{2}+c^{2}-a^{2}\right)^{2}}+\frac{b^{2} c^{2}}{b^{2}+c^{2}-a^{2}}\left(-2+1+\frac{b^{2}+c^{2}}{b^{2}+c^{2}-a^{2}}\right) \\
= & 0,
\end{aligned}
$$

as desired.

5 Determining when to use Barycentric Coordinates

The suitability of a geometry problem for a barycentric bash will fall on a scale, from very unsuitable to very suitable. Some general things to look out for are:

GOOD for barycentric coordinates:

- Points constructed as ratios of lengths (especially midpoints)
- Points constructed via intersections of lines
- Not many circles, or circles passing through similar sets of points
- Incenter/excenter/centroid of reference triangle

BAD for barycentric coordinates :

- Many circles, circles passing through mostly distinct points (e.g. circumcircles of $A B C$ and $D E F$)
- Cyclic quadrilaterals
- n-gons for $n \geq 5$
- Orthocenter/Circumcenter of triangles

The suitability of a problem for barycentric coordinates will depend greatly person to person. For people who are great at synthetic geometry, barycentric coordinates will likely be a tool only used occasionally, as synthetic solutions are nearly always quicker and nicer to writeup (if you can come up with them). However, to someone who is not great at synthetic geometry and can parse algebra well, they will be able to use barycentric coordinates to turn some problems into a straightforward structured calculation (like the example above).

Where do you fall? A good exercise to try is the following:
Find any geometry problem, sketch the diagram, and decide if you think barycentric coordinates are a reasonable idea to try. If so, try to determine what choices to make and start doing the proof with barycentric coordinates; keep going as long as you find it reasonable. Afterwards, try to do it synthetically/with other bashing methods, and see what worked best. Some questions to ask yourself: was it straightforward with the bary coords? Would it work with bary coords but the algebra is way too messy to get it done? Was it doable with bary coords but much easier synthetically?

By repeating this, you can get a good grasp on how often and for what problems these methods will be good for.

6 Problems

1. Prove Ceva's theorem with barycentric coordinates.
2. Prove Stewart's theorem (let $A B C$ be a triangle, D on segment $B C$. Let $A B=c, B D=m$, $D C=n, C A=b, B C=a=m+n$, and then we have $b^{2} m+c^{2} n=a\left(d^{2}+m n\right)$.)
3. Let $A B C$ be a triangle and let ω be its incircle. Denote by D_{1} and E_{1} the points where ω is tangent to sides $B C$ and $A C$, respectively. Denote by D_{2} and E_{2} the points on sides $B C$ and $A C$, respectively, such that $C D_{2}=B D_{1}$ and $C E_{2}=A E_{1}$, and denote by P the point of intersection of segments $A D_{2}$ and $B E_{2}$. Circle ω intersects segment $A D_{2}$ at two points, the closer of which to the vertex A is denoted by Q. Prove that $A Q=D_{2} P$.
4. Let $A B C$ be a non-isosceles right-angled triangle ($\angle A=90^{\circ}$) and let M be the midpoint of $B C . \omega_{1}$ is a circle which passes through B, M and is tangent to $A C$ at $X . \omega_{2}$ is a circle which passes through C, M and is tangent to $A B$ at $Y(X, Y$ and A are on the same side of $B C$). Prove that $X Y$ passes through the midpoint of arc $B C$ (that does not contain A) of the circumcircle of $A B C$.
5. Let $A B C$ be a triangle and let D be a point on the segment $B C, D \neq B$ and $D \neq C$. The circle $A B D$ meets the segment $A C$ again at an interior point E. The circle $A C D$ meets the segment $A B$ again at an interior point F. Let A^{\prime} be the reflection of A in the line $B C$. The lines $A^{\prime} C$ and $D E$ meet at P, and the lines $A^{\prime} B$ and $D F$ meet at Q. Prove that the lines $A D, B P$ and $C Q$ are concurrent (or all parallel).
6. Let $A B C$ be a triangle. Suppose that X, Y are points in the plane such that $B X, C Y$ are tangent to the circumcircle of $A B C, A B=B X, A C=C Y$ and X, Y, A are in the same side of $B C$. If I be the incenter of $A B C$ prove that $\angle B A C+\angle X I Y=180$.
7. Let $A B C$ be an acute-angled triangle whose inscribed circle touches $A B$ and $A C$ at D and E respectively. Let X and Y be the points of intersection of the bisectors of the angles $\angle A C B$ and $\angle A B C$ with the line $D E$ and let Z be the midpoint of $B C$. Prove that the triangle $X Y Z$ is equilateral if and only if $\angle A=60^{\circ}$.
8. Given a triangle $A B C$. Point A_{1} is chosen on the ray $B A$ so that segments $B A_{1}$ and $B C$ are equal. Point A_{2} is chosen on the ray $C A$ so that segments $C A_{2}$ and $B C$ are equal. Points B_{1}, B_{2} and C_{1}, C_{2} are chosen similarly. Prove that lines $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ are parallel.
9. Triangle $A B C$ is inscribed in circle ω. Point P lies on line $B C$ such that line $P A$ is tangent to ω. The bisector of $\angle A P B$ meets segments $A B$ and $A C$ at D and E respectively. Segments $B E$ and $C D$ meet at Q. Given that line $P Q$ passes through the center of ω, compute $\angle B A C$.
10. Given triangle $A B C$. One of its excircles is tangent to the side $B C$ at point A_{1} and to the extensions of two other sides. Another excircle is tangent to side $A C$ at point B_{1}. Segments $A A_{1}$ and $B B_{1}$ meet at point N. Point P is chosen on the ray $A A_{1}$ so that $A P=N A_{1}$. Prove that P lies on the incircle of triangle $A B C$.
11. Given a non-isosceles triangle $A B C$, let D, E, and F denote the midpoints of the sides $B C, C A$, and $A B$ respectively. The circle $B C F$ and the line $B E$ meet again at P, and the circle $A B E$ and the line $A D$ meet again at Q. Finally, the lines $D P$ and $F Q$ meet at R. Prove that the centroid G of the triangle $A B C$ lies on the circle $P Q R$.
12. Let $A B C$ be a triangle with a right angle at C. The angle bisectors of angles A, B meet $B C, C A$ at A_{1}, B_{1} respectively. Let I be the incenter of $A B C$ and O the circumcenter of $C A_{1} B_{1}$. Prove that $O I \perp A B$.
13. Let $A B C$ be a triangle. A circle passing through A and B intersects segments $A C$ and $B C$ at D and E, respectively. Lines $A B$ and $D E$ intersect at F, while lines $B D$ and $C F$ intersect at M. Prove that $M F=M C$ if and only if $M B \cdot M D=M C^{2}$.
14. Let $A B C$ be a triangle with $A B=A C \neq B C$ and let I be its incentre. The line $B I$ meets $A C$ at D, and the line through D perpendicular to $A C$ meets $A I$ at E. Prove that the reflection of I in $A C$ lies on the circumcircle of triangle $B D E$.
15. In convex cyclic quadrilateral $A B C D$, we know that lines $A C$ and $B D$ intersect at E, lines $A B$ and $C D$ intersect at F, and lines $B C$ and $D A$ intersect at G. Suppose that the circumcircle of $\triangle A B E$ intersects line $C B$ at B and P, and the circumcircle of $\triangle A D E$ intersects line $C D$ at D and Q, where C, B, P, G and C, Q, D, F are collinear in that order. Prove that if lines $F P$ and $G Q$ intersect at M, then $\angle M A C=90^{\circ}$.
16. The incircle of a non-isosceles triangle $A B C$ with the incenter I touches the side $B C$ at D. Let X be a point on arc $B C$ from circumcircle of triangle $A B C$ such that if E, F are feet of perpendicular from X to $B I, C I$ and M is midpoint of $E F$, then we have $M B=M C$. Prove that $\angle B A D=\angle C A X$.
